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Abstract

Software libraries such as OpenSSL, mbed TLS and WolfSSL provide a secure
transport layer for application data in the network. These libraries secure
TCP traffic with the TLS protocol and secure UDP traffic with the DTLS
protocol. It is important that the security protocol has been implemented in
the right way. A wrong implementation could lead to security vulnerabilities
in all applications that use these libraries. This thesis analyses server-side
DTLS implementations whether these libraries have implemented the DTLS
protocol correctly by using state machine inference. Using this technique,
we can create a state machine by only knowing the input and output alpha-
bet of the DTLS implementation. We were able to create and analyse the
state machine for OpenSSL and mbedTLS. This thesis found no security
vulnerabilities in OpenSSL, but found unexpected behaviour in mbedTLS.
We were not able to create a state machine for WolfSSL.
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Chapter 1

Introduction

Applications that would like to communicate over the internet will likely use
transport layer protocols. The two main transport protocols are Transmis-
sion Control Protocol (TCP) and User Datagram Protocol (UDP) [1] [2].
TCP excels in reliability whereas UDP excels in speed. TCP is the most
common transport layer protocol. However, UDP is being used by more and
more applications [3]. Applications that require a fast connection between
client and server prefer UDP over TCP. TCP provides reliable data trans-
fer. This means that when packets arrive in the wrong order, it reorders the
packets. When packets do not arrive at all, it retransmits. This results in
more overhead. UDP does not provide reliable data transfer. This makes
UDP faster than TCP, but less reliable.

Both transport protocols are not secure by themselves. An adversary
in the network can intercept packets and read or modify data that is being
sent. The most common way to secure a TCP connection is by using the
Transport Layer Security (TLS) protocol. As the RFC of TLS states, TLS
provides privacy and data integrity between two communicating applications
[4]. To secure UDP traffic, Datagram Transport Layer Security (DTLS) has
been published [5] [6] [7].

DTLS is a security protocol based on the TLS protocol and provides the
same communication privacy as TLS. It is important that the implementa-
tion of the DTLS protocol is done in the right way. A wrong implementation
could lead to a vulnerability in the software. This vulnerability could be ex-
ploited by an adversary and secure communication will become insecure.
The adversary will be able to read the application data. Software libraries
that provide secure communication such as OpenSSL, mbedTLS and Wolf-
SSL, also have DTLS support. Applications could use these libraries for
their application communications. A vulnerability in one of these libraries,
or in other implementations of DTLS in general, result in a vulnerability in
all applications that use these libraries. Research in these protocol imple-
mentations is vital to detect and remove vulnerabilities.



In this thesis, we analyse several server-side DTLS implementations by
using state machine inference. This technique uses a black-box approach to
create a state machine by only knowing the input and output alphabet of
the implementation. Analysing the end result of the state machine, we can
conclude whether the server-side DTLS implementation has vulnerabilities.
If we do not find a vulnerability in the implementation, it does not mean
that the implementation has no vulnerabilities. It could still be vulnerable
to other attacks, for example buffer overflow or man-in-the-middle attacks.

This thesis explains the basics of TLS 1.2 in section 2.1, how DTLS works
in section 2.2, what state machine inference is in section 2.3. The tools we
use in section 3.1, how we have analysed server-side DTLS implementations
in section 3.2 as well as the results in section 3.3, 3.4 and 3.5. Related work
will be discussed in section 4. This thesis will end with a conclusion in
section 5.



Chapter 2

Preliminaries

In this section we explain the information needed to understand this thesis.
The basics of TLS 1.2 will be explained in section 2.1. The DTLS 1.2
protocol will be explained in section 2.2. In section 2.3, the technique of
state machine inference will be explained.

2.1 Basics of TLS 1.2

DTLS 1.2 is based on TLS 1.2 with some differences. The internals of
DTLS 1.2 are the same as TLS 1.2. However, to cope with the unreliabil-
ity of UDP, DTLS has to implement a solution for packet loss and packet
reordering. Secondly, Denial-of-Service (DOS) possibilities arise while UDP
is connectionless. In August, TLS 1.3 has been released. However, DTLS
1.3 is still work in progress [7]. Since DTLS 1.3 is still under development,
many libraries do not have DTLS 1.3 support. Therefore we are analysing
DTLS 1.2 implementations. To understand DTLS 1.2, we first need to learn
how TLS 1.2 works. RFC 5246 specifies TLS 1.2 [4].

T. Dierks and C. Allen specified TLS 1.0 in January 1999 [8]. In April
2006, T. Dierks and E. Rescorla improved TLS 1.0 to TLS 1.1. TLS 1.1 has
some small security and clarification improvements [9]. TLS 1.2 has been
specified in August 2008 [4]. The biggest improvement in this version are
flexibility in cipher suite negotiation. In August 2018, TLS 1.3 has been
specified by E. Rescorla [10].

A TLS 1.2 connection starts with a TLS handshaking protocol between
client and server. The handshaking protocol has three subprotocols: Hand-
shake Protocol, Change Cipher Spec Protocol and the Alert Protocol.

e Handshake Protocol:
This protocol handles the cryptographic configuration that will be
used during and after the handshake. The handshake protocol has
the following goals as stated in section 7.3 of RFC 5246: “A client
and server agree on a protocol version, select cipher suites, optionally



authenticate each other, and reliable negotiation of a shared key takes
place” [4].

Change Cipher Spec Protocol:

The Change Cipher Spec protocol handles a change in the cipher
suite. TLS uses this protocol, when a client or server changes the
cryptographic algorithm. All messages after the ChangeCipherSpec
message use the new cryptographic algorithm. This means that af-
ter the ChangeCipherSpec message, both sides start encrypting and
decrypting by using the computed keys.

Alert Protocol:

The Alert protocol consists of warning and fatal error messages. When
a peer receives a fatal error message, the connection must be termi-
nated immediately. For example, a client could receive an unexpected
fatal error message in the handshake protocol. This means that the
server has received an unexpected message from the client. The mes-
sage flow in the handshake protocol is strict. Whenever an unexpected
message has been received by either the client or server, the handshake
must fail. Receiving an unexpected fatal error message means that
the implementation of the protocol is not correct. A correctly imple-
mented client and server should never receive an unexpected message
error when communicating.

A warning error message could be a user cancellation or receiving an
unknown /expired/revoked certificate. These warnings are not fatal.
In theory, a connection could continue when an expired certificate is
received. In TLS 1.3 this is not possible anymore. Every error message
will result in a failed handshake.
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Figure 2.1: TLS 1.2 handshake message flow

Figure 2.1 shows the strict handshake message flow between client and
server. We explain each message below. Handshake messages between closed
brackets are situational messages. These messages are necessary in some
situations, depending on the cipher suite that will be used.

1. ClientHello: (required)
The client starts the handshake by sending the ClientHello to the
server. The main goal for this message is to communicate cipher suites
and compression algorithms it would like to speak with the server.
The client creates a list of supported cipher suites and compression
algorithms. We will use the cipher suite TLS_RSA_WITH_AES 128 CBC_-
SHA256. This cipher suite contains:

e RSA: Used for key exchange.
e AES 128 _CBC: Used for symmetric encryption.
e SHA256 Used for hashing.

A client could start a new session or resume a session. The ClientHello
messages includes a session ID. If the session ID is empty, the client
would like to start a new session. If the session ID is not empty, the
client would like to resume a connection.



The ClientHello also includes a random value. This random value is
randomly generated by the client which will be used to compute the
master_secret later on. The last thing present in the ClientHello are
extensions. A client could request additional functionality with exten-
sions. If the server is not able to handle this additional functionality,
the client may abort the connection.

An example of a ClientHello extension is the signature algorithm ex-
tension. This extension requests the server to add signatures in their
ServerCertificate. The certificate list in the ServerCertificate message
must be signed using this signature algorithm.

After sending a ClientHello message, the client waits until it receives
a ServerHello message.

. ServerHello: (required)

After the server received the ClientHello message, the server answers
with a ServerHello. In this message the server takes one cipher suite
and one compression algorithm out of the list in the ClientHello mes-
sage. Now, the client and server have agreed on which cipher suite to
use during and after the handshake. If the server cannot find a sup-
ported algorithm, the handshake fails with an handshake failure error.
This error is fatal, so the handshake must be terminated.

If client and server have already communicated with each other, they
could resume the session using the session ID in the Hello messages. If
the session ID is not empty, the server looks in its cache for a match.
If a match has been found, the ServerHello message uses the same
session ID to indicate a previous session will be continued now. The
cipher suite and compression algorithm will be the same as the last
session. In this case the handshake will continue with the Finished
message, which will be explained later.

Just as the ClientHello, the ServerHello message also contains a ran-
dom value. This value is randomly generated by the server and does
not have any relation to the clientHello random value. Both random
values will be used to compute the master_secret.

. ServerCertificate:

After the ServerHello message, the server sends another message to
the client: the ServerCertificate message. This message is not required
in every situation, but in most cases it is. If the key exchange uses
certificates for authentication, this message is required. Cipher suites
with RSA key exchange use RSA certificates, cipher suites with Diffie-
Hellman (DH) key exchange use certificates with DH parameters and
cipher suites with ephemeral Diffie-Hellman (DHE) uses certificates
with DHE parameters. In this message the server sends its certificate



to the client to authenticate itself to the client. Some cipher suites use
anonymous DH key exchange. When using this cipher suite, neither
the client nor the server authenticates itself. This cipher suite makes
TLS vulnerable to man-in-the-middle attacks.

This message contains a list of certificates, starting with the server’s
certificate and ending with root certificate authority.

Certificate verification:

The client can verify whether it is communicating with the real server
by using this certificate list. The client should start by verifying the
root authority certificate. Then, the client verifies the next certificate
in the list with the parent certificate. The client iterates this method
until the client has reached the servers’s certificate which is the last
on the list.

. ServerKeyExchange:

If the ServerCertificate does not contain enough data to exchange a
premaster secret, the server sends a ServerKeyExchange message. This
message is only required when using a ciphersuite with DHE_DSS,
DHE_RSA or DH_anon key exchange. It is forbidden to send a Server-
KeyExchange message when using a ciphersuite with RSA, DH_DSS or
DH_RSA. When using a DHE key exchange, this message contains the
prime modulus (p), generator (¢g) and public key (¢¥ mod p), where
X is the private key of the server.

. CertificateRequest:

A server could request a certificate from the client with this mes-
sage. The client must authenticate itself in the next message with the
ClientCertificate message. Only an authenticated server is allowed to
request a client’s certificate. If an anonymous server request sends this
message, the handshake should fail with a fatal error message.

. ServerHelloDone: (required)

This message indicates the end of the server messages at this point.
The server will wait for a response of the client. This message does
not contain any data.

. ClientCerticate:

If the server has requested a client certificate with the Certificate-
Request message, the client should respond with a ClientCertificate
message. If the client does not have a client certificate, this message
has length zero. The server will decide whether it will continue the
handshake.

. ClientKeyExchange: (required)
In this message the client sends a premaster secret to the server. The



data in this message depends on what cipher suite is selected earlier in
the handshake. After this message the client and server will be able to
construct a master key. When using a ciphersuite with RSA key ex-
change, this message contains the 48-byte premaster secret computed
by the client. The client is able to compute the premaster secret, with
the data the server provided in the ServerCertificate and ServerKeyEx-
change. The premaster secret will not be send in plain text, this would
be insecure. It will be encrypted with the public key of the server. Only
the server will be able to decrypt the premaster secret. Now, the client
and server have a shared premaster secret. This secret will be used
later on when client and server compute the master_secret. When
using a ciphersuite with DH key exchange, the client’s public value
will be send to the server. Both parties have the public value of itself
and the other party and can compute the DH master_secret. This
master_secret will be used after the ChangeCipherSpec and the Fin-
ished message is the first encrypted message using this master_secret.

Computing the master_secret:

The master_secret is computed with the pre-master secret, client
random value and server random value. Both client and server will
compute the master_secret with a Pseudo Random Function (PRF):

master_secret = PRF(pre master_secret, ‘‘master secret’’,
ClientHello.random + ServerHello.random)

The PRF can produce arbitrary lengths output. It has 3 parameters,
namely the secret, label and seed and is defined as:

PRF (secret, label, seed) = P_<hash>(secret, label + seed)

The hash function, used in the PRF and Keyed-Hashing for message
Authentication (HMAC), is part of the cipher suite, which has been
chosen in the Hello messages. In the cipher suite TLS_RSA_WITH_AES-
_128_CBC_SHA256, SHA256 will be the hash function used in the PRF
and HMAC.

P_<hash>(secret, label + seed) is defined as:

P_<hash>(secret, label + seed) =
HMAC_hash(secret, A(1) + seed) +
HMAC_hash(secret, A(2) + seed) +
HMAC_hash(secret, A(3) + seed) + ...

Where A is defined as:



10.

11.

A(0) = seed
A(i) = HMAC_hash(secret, A(i-1))

The HMAC hash() results in a byte length of 32. To compute the
master_secret with 48 bytes, we need to run HMAC hash() twice.
Where the last 16 bytes are not used.

CertificateVerify:

This message is sent by the client when the certificate has signing
capability. This message provides explicit verification of the client’s
certificate.

ChangeCipherSpec: (required)

The ChangeCipherSpec message is used during the handshake, but it
is not part of the handshake protocol. This message signals that all
messages after the ChangeCipherSpec message will use the new cryp-
tographic algorithm and master_secret. Both sides start encrypting
and decrypting using the computed keys.

Key derivation:
The master_secret will be used to compute a key_block, from where
the following keys are derived:

e client_write_ MAC _key
e server_write_ MAC key
e client_write_key

e server_write_key

The key_block is computed with:

key_block = PRF(master_secret, °‘key expansion’’,
server.random + client.random)

The first block of bits with length client_write_Z MAC key is the client-
_write_lMAC _key, the next block of bits with length server_write_ MAC-
_key is the server_write_ MAC key et cetera. The server and client are
using distinct symmetric keys to encrypt their data. As a server, it is
not able to echo a client’s message back to the client. The client will
not be able to decrypt it, because it uses a different key to decrypt.
To echo a message, the server has to decrypt the message with the
client_write_key and encrypt the message with the server_write_key.

Finished: (required)
The Finished message is the first encrypted message between client
and server using the shared master_secret. This message always
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follows after a ChangeCipherSpec message. The server should be able
to decrypt this message and can confirm the integrity of the handshake
and that client and server have the same shared key. After this message
the client and server can exchange application data.

The ChangeCipherSpec and Finished message is sent by both parties
at the end of the handshake. It contains a verify_data 96-byte value.

e If this message is sent by a server, the verify_data will be com-
puted by the following:
verify_ data = PRF (master_secret, ‘‘server finished’’,
hash(handshake messages)).

e If this message is sent by a client, the verify_data will be com-
puted by the following:
verify_ data = PRF (master_secret, ‘‘client finished’’,
hash(handshake messages)).

Again, the PRF is used here. One of the PRF parameters is a hash
of handshake messages. This hash is chosen by the cipher suite that
is being used. The handshake messages is a list of all handshake mes-
sages excluding this Finished message.

After the TLS handshake, the client and server have a protected connection
with symmetric keys derived from the master_secret. One symmetric key
is for client message encrypting/decrypting and one is for server message
encrypting/decrypting.

TLS 1.3

TLS 1.3 has removed insecure cryptographic algorithms, such as DES and
MD5. Next to this, all handshake messages after the ServerHello are en-
crypted. The last major difference between TLS 1.3 and TLS 1.2 is that the
handshake is 1 round trip shorter, this results in a quicker handshake. TLS
1.3 has a so called 0-RTT (zero round-trip time), which is even faster. This
new feature allows clients to send more data in the first message and reduces
the handshake round-trips. This is only possible when client and server al-
ready share a Pre-Shared Key. Client and server could obtain a Pre-Shared
Key externally or via a previous handshake. The shorter O-RTT handshake
is less secure than the normal handshake. Appendix E.5 of the RFC states
that the O-RTT handshake is vulnerable to replay attacks. An adversary
could replay a previous 0-RTT handshake and duplicate the action that has
been taken. Buying an item in a webshop or transferring money could be
duplicated when TLS 1.3 uses the 0-RTT handshake. To protect a customer
from a replay attack, a server has to prevent these attacks by implementing
one of the methods described in section 8 of RFC8446. One of the suggested
methods would be that the server does not allow a session ID to be used
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more than once. A session ID that already has been used, must be denied
by the server. If the 0-RRT hanshake fails, TLS 1.3 will fall back to the
standard 1-RTT handshake. This feature is not available in TLS 1.2 and
thus not available in DTLS 1.2.

2.2 DTLS 1.2

As explained in the introduction, it is not possible to run TLS over UDP as
TLS requires a reliable transport layer [4]. UDP does not provide a reliable
transport layer. TLS will break when it runs over UDP when a packet is
lost or reordered. Therefore DTLS has been made to secure UDP traffic.
This section is mostly based on RFC 6347, which explains the DTLS 1.2
protocol [6].

The Datagram Transport Layer protocol (DTLS) is a security protocol
on top of the User Datagram Protocol (UDP). DTLS provides secure net-
work traffic as stated in the RFC of DTLS 1.2. DTLS has been designed in
such a way that it is similar to TLS and can run over UDP to create a fast
and secure connection between client and server. DTLS uses the same hand-
shake messages as TLS. Minimizing security invention and reusing code and
infrastructure are the main reasons to build DTLS in the same way as TLS
[6]. As DTLS provides communication privacy the same way as TLS, DTLS
does not reinvent the wheel. The code base of the TLS implementation can
be reused when implementing DTLS. Closing a DTLS connection the im-
plementation should send a close_notify alert. This way, the peer knows the
connection is ending.

DTLS 1.0 is based on TLS 1.1, DTLS 1.2 is based on TLS 1.2 [5] [6]. On
November 5, 2018 a draft has been published for DTLS 1.3 that is designed
based on TLS 1.3 [7]. TLS 1.3 has been approved in August 2018 [10]. To
run parallel with TLS versions, DTLS 1.1 has been skipped.

This section explains how DTLS 1.2 solves unreliability and what has
changed compared to TLS 1.2.

Unreliability, message size and Denial-of-Service attack possibilities are
problems DTLS has to solve. The unreliability problem could be divided in
to two problems, packet loss and packet ordering. In the next section we
will separately discuss the four problems and how DTLS solves these.

2.2.1 Timeout and Retransmission

The first problem is packet loss. The TLS handshake assumes no packets
are lost. With UDP, there is a possibility that packets get lost. To solve
the packet loss problem, DTLS uses a simple retransmission mechanism.
Both sides, client and server, use a timer to keep track how long it takes
to receive a response. If, for example, the timer expires on the client side,
it will retransmit its last packet sent. A time could expire because its own
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message got lost or the response message got lost. In both cases the client
will retransmit.

DTLS uses a state machine for retransmissions. There are four states in
the state machine: PREPARING, SENDING, WAITING and FINISHED.

e PREPARING:
During the PREPARING state, the client or server creates messages.

e SENDING:
During the SENDING state, the client or server sends the messages to
the peer.

e WAITING:
During the WAITING state, the client or server waits for a response
from the peer. In this state, client or server starts a timer. When the
timer expires it will enter the SENDING state again and retransmit
the last messages. Receiving a message from its peer will stop the
timer.

e FINISHED:
When the handshake is done, the implementation enters the FIN-
ISHED state and application data will be sent. To keep the fast UDP
properties no retransmission will take place in this state.

The timer length depends on the amount of retransmission that already have
been done. The default start timer length is 1 second. After every retrans-
mission the timer length doubles, with a maximum of 60 seconds. Doubling
the timer length prevents more congestion on the connection between client
and server. If the connection is already congested, a constant timer length
would congest the connection even more. The timer will reset to 1 second
once a transmission has been sent without loss or after an idle period of
10 times the current timer value. If the current timer value is 60 seconds,
the timer will reset to 1 second after a successful transmission or after 600
seconds.

2.2.2 Fragmentation

The second problem to solve is the message size. TCP packets could have
a maximum of 22* — 1 bytes. When a TCP message is too large, the IPv4
protocol fragments it. TCP provides a byte stream for TLS, so TLS does not
have to worry about fragmentation. However, a UDP datagram without IP
fragmentation could only be 1500 bytes. The TLS handshake messages that
are more than 1500 bytes needs to be fragmented. The fragments will be sent
in separate datagrams. To send a TLS handshake message in DTLS, one
has to create a TLS handshake message, fragment the handshake message
into smaller fragments and send all fragments to its peer. The peer will
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combine the fragments to a TLS handshake message. The fragments needs
to contain a fragment length and a fragment offset in order to combine the
fragments in the right order. The fragment length indicates the length of
the data in this fragment, the fragment offset indicates the length of the
data in all previous fragments combined.

TLS handshake

Sequence number =1

Data: length = 1009

/ N
/ AN
/ N
/ N

Vi \
DTLS fragmented handshake DTLS fragmented handshake

Epoch=1 Epoch=1

Sequence number =2

Sequence number =1

Message sequence = 1
Data: length = 1009
fragment_length=117

fragment_offset =0

Message sequence = 1
Data: length = 1009
fragment_length= 892

fragment_offset =117

Figure 2.2: An example of DTLS 1.2 fragmentation

As shown in figure 2.2, there are two sequences numbers and an epoch,
this will bring us to the next DTLS difference.

2.2.3 Handshake header modification

The third problem is packet ordering. With UDP, packets could arrive in
the wrong order. Therefore, DTLS should reorder the packets itself. To
handle this, DTLS adds an epoch number and a second sequence number
to the header of a handshake message. The second sequence number is
called message sequence. The newly added message sequence and epoch are
located in the header of a DTLS record layer.
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The epoch value starts at 0 and will increase after every cipher state
change. It will increase to 1 in the Finished message, because the Finished
message is encrypted with a different cipher state. This epoch value helps the
implementation to decide with which cipher state this packet is encrypted.
It is possible that the message of a new cipher state arrives earlier than the
cipher state announcement. Without the epoch number, the implementation
would decrypt the message with the wrong cipher state. With the epoch
number, the implementation knows it belongs to a different cipher state.

The sequence number is used to verify the TLS MAC. It starts at 0 and
increases with every message. When the epoch is increased, the sequence
number starts at 0 again.

The sequence number and message sequence are increasing linearly, until
fragmentation takes place. As seen in figure 2.2, the sequence number of
the fragmented messages increases with every fragmentation. However, the
message sequence stays the same. The message sequence is used to combine
all fragmented message into one message. After the fragmentation, the
sequence number and message sequence increase linearly again.

2.2.4 Stateless cookie exchange addition

The last problem is the possibility of a Denial-of-Service attack. An ad-
versary could start multiple handshake requests and causing the server to
allocate memory and performing cryptographic operations. This will slow or
even disrupt other connections. Therefore causing a denial-of-service attack
(DoS). A second DoS attack is an amplification attack. In this attack, the
attacker sends a small ClientHello message to the server and receives a large
CertificateMessage back. Spoofing the source IP address to a victim’s IP
address, the unknowing DTLS server will send a large Certificate message
to the victim’s IP address. The victim gets flooded by the innocent server.

DTLS 1.2 adds a stateless cookie exchange to the TLS handshake to
prevent denial-of-service attacks. This stateless cookie exchange happens
in the Hello messages. Just as TLS 1.2, the client starts a handshake with
a ClientHello message. In DTLS 1.2, the server will not respond with a
ServerHello immediately, but responds with a new message which we have
not seen in TLS 1.2. This new message is called HelloVerifyRequest. The
HelloVerifyRequest message consist of a cookie generated by the server. The
cookie is computed with the following computation:
Cookie = HMAC(Secret, Client-IP, Client-Parameters) The secret is
a server-side secret which should be changed frequently. Keeping the secret
for a long time, a new attack is possible. An adversary can collect several
cookies from different IP addresses and reuse them later. Changing the
secret will invalidate all previous cookies.

After the client has received the HelloVerifyRequest, it will send the
same ClientHello message again, but with the cookie added. The server will
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verify if the second ClientHello contains the right cookie and will continue
with the ServerHello.

This DoS prevention costs an extra flight in the handshake and thus
increases the handshake time.

Client Server

ClientHello

\

HelloVerifyRequest

ServerHello
[ServerCertificate]
[ServerKeyExchange]
[CertificateRequest]
ServerHelloDone

[ClientCertificate]
ClientKeyExchange
[CertificateVerify]
ChangeCipherSpec

[ChangeCipherSpec]
Finished

1
1
I
- |
Application Data o

]

I

|

|

I
I
I
I
1
1
1
1
I
I‘
I

I

|

Figure 2.3: DTLS 1.2 handshake message flow

Figure 2.3 shows a DTLS 1.2 handshake message flow. Comparing this
to the TLS 1.2 handshake message flow in figure 2.1, we can see that DTLS
1.2 uses an extra flight in the Hello messages.

2.3 State machine inference

In this thesis, we are using Mealy machines to learn the different states of
a server-side DTLS implementation. A Mealy machine is a deterministic
finite-state machine, where the state and input determine the output [11].
A Mealy machine is a 6-tuple (S, Sp, X, A, T, G) where:

e S: Finite set of states.
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e Sy: Start state, where Sy € S.
e . Finite set of input alphabet.
e A: Finite set of output alphabet.

T: State transition function 77: S x ¥ — S.

G: Output function G : S x ¥ — A.

0/1

0/0

1/0 1/0

0/1
1Al

Figure 2.4: Example of a Mealy machine

Figure 2.4 is an example of a Mealy machine. This Mealy machine has the
following 6-tuple:

. 5=1{0,1,2}
e Sop =0, where 0 € S.
e ¥ ={0,1}

A={0,1}

T: State transition function 7": S x ¥ — S:
Represented in a state transition table:

State 0 | State 1 | State 2
Input 0 | State 1 | State 1 | State 2
Input 1 | State 2 | State 2 | State 2
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e (G: Output function G : S x ¥ — A:
Represented in an output table:

State 0 State 1 State 2
Input 0 | Output 0 | Output 1 | Output 1
Input 1 | Output 0 | Output 0 | Output 1

The start state, Sp is indicated with an arrow (—). Starting in Sp with an
input string 01, results in a state transition from Sy — S; and an output
string of 01 following the state transition table and the output table. The
Mealy machine is deterministic, because for each input and state, it always
ends in the same state, with the same output. It is also a finite-state ma-
chine, because the state machine has finite states and finite state transitions.

State machine inference creates a Mealy machine from a protocol implemen-
tation. Using a black-box approach, it is possible to create a state machine
by only knowing the input and output alphabet. This will be the set of
protocol messages. States, state transitions and output values are learned
during the process.

Two algorithms are used when performing state machine inference. A
learning algorithm and an equivalence algorithm:

e Learning algorithm:
This algorithm learns the protocol it is talking to. By sending pro-
tocol messages, state machine inference can learn the states, state
transitions and output of the protocol implementation.

At the end of the learning algorithm, a hypothesis is made and this
hypothesis will be sent to the equivalence algorithm.

e Equivalence algorithm:
With the hypothesis of the learning algorithm, the equivalence al-
gorithm tests whether the hypothesis represents the actual protocol
implementation. If it does not represent the actual protocol imple-
mentation, a counter-example will be made and sent to the learning
algorithm. The learning algorithm starts again. This will go on, until
a hypothesis is accepted that represents the protocol implementation.
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ClientHello/-

ClientHello/-

Finished/
ALERT_FATAL_UNEXPECTED_MESSAGE

Finished/
ALERT_FATAL_UNEXPECTED_MESSAGE

ClientHello/ALERT_FATAL_UNEXPECTED_MESSAGE
Finished/ALERT_FATAL_UNEXPECTED_MESSAGE

Figure 2.5: A practical example of a Mealy machine

Figure 2.5 is an example, with a closer input/output alphabet to our actual
problem. This Mealy machine has an input of TLS protocol messages, and
an output of TLS protocol messages, including errors:

e 5={0,1,2}

e Sy =0, where 0 € S.

¥ = { ClientHello, Finished }

A ={ -, ALERT FATAL UNEXPECTED_MESSAGE }

e T': Transition function 7: S x ¥ — S
Represented in a state transition table:

State 0 | State 1 | State 2
ClientHello | State 1 | State 1 | State 2
Finished State 2 | State 2 | State 2

e (G: Output function G: S x ¥ — A:
Represented in an output table:
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State 0 State 1 State 2
. ALERT_FATAL_
ClientHello - -
UNEXPECTED_MESSAGE
.. ALERT_FATAL_ ALERT_FATAL_
Finished -
UNEXPECTED_MESSAGE UNEXPECTED_MESSAGE

With an input algorithm of ¥ = { ClientHello, Finished } , the state machine
inference can start learning this example protocol.

Starting in the starting state Sy, the learning algorithm starts sending
the input alphabet and will learn this simple implementation.

Sending ClientHello:
The algorithm learns a new output -,
creates a new state Sq,
with a new state transition Sy — S7.

Sending Finished:

The algorithm learns a new output ALERT_FATAL UNEXPECTED_MESSAGE,
creates a new state So,

with a new state transition Sy — Ss.

Next round:

Sending ClientHello/ClientHello:
The algorithm learns a new state transition S; — Sj.

Sending ClientHello/Finished:
The algorithm learns a new state transition S; — Ss.

Sending Finished/ClientHello:
The algorithm learns a new state transition S — Ss.

Sending Finished/Finished:
The algorithm learns a new state transition S — Ss.

This state machine will be checked by the equivalence algorithm whether it
represents the actual protocol. If this check passes, the algorithm is finished.
If it did not pass the test, the learning algorithm tries to create a new state
machine.
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Chapter 3

Research

In this section, we explain the tools we have used. After that, the research
set-up will be explained. The analysis and the result from each server-side
implementation of the DTLS protocol are discussed separately.

3.1 Tools

The tools we have used are TLS-Attacker, TLS-Attacker-Connector
and Statelearner.

3.1.1 TLS-Attacker

TLS-Attacker is a framework to analyze TLS implementations developed by
the Ruhr University Bochum and the Hackmanit GmbH written in Java 8
[12]. It can send TLS messages to the implementation in a random order.
This way it tries to break the implementation. TLS-Attacker supports TLS
1.0, TLS 1.1, TLS 1.2 and TLS 1.3. A feature to analyze DTLS imple-
mentations is being built. This feature is still unstable and has yet to be
released in the public repository. The feature is almost done and together
with the developers, Joeri de Ruiter, Paul Fiterau Brostean and I have de-
bugged this feature to a working DTLS feature. TLS-Attacker is able to
complete a handshake and send application data to a DTLS server, but it
is still unstable. Receiving a retransmission will fail the handshake. Future
work has to be done in order to handle retransmission. TLS-Attacker is
available at https://github.com/RUB-NDS/TLS-Attacker. Compiling the
project is done by Maven, with the command:

$ mvn clean install

Installing Maven on a Ubuntu machine, can be done by:
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$ sudo apt-get install maven

To test the TLS-Attacker client, a TLS server is required. We advise to run
a TLS server locally as TLS-Attacker could shutdown the server. While run-
ning a TLS server locally on TCP port 4432, one could start a TLS-Attacker
client with the following command:

$ java -jar TLS-Client.jar -connect localhost:4432

This will start performing a TLS handshake with a TLS server on local-
host:4432. To test a handshake with a DTLS server on UDP port 4433, use
the following command:

$ java -jar TLS-Client.jar -connect localhost:4433
-version DTLS12

This will start a TLS handshake with a DTLS server on localhost:4433.

It is also possible to run TLS-Attacker as a library, which you can import
in the project and create your own TLS message flow. Therefore you will
need a Config class. This class stores all configurations of TLS-Attacker,
such as server IP address, server port, protocol version and a list of cipher
suites. The WorkflowTrace class is used to create a TLS message flow, this
could be different from a normal handshake. In the example below the pro-
gram sends a ClientHelloMessage and expects to receive a ServerHelloMes-
sage back. The State class stores the configuration of the program and the
message flow, which will be executed with the Default WorkflowExecutor.

Config config = Config.createConfig();

WorkflowTrace trace = new WorkflowTrace();
trace.addTlsAction(new SendAction(new ClientHelloMessage()));
trace.addTlsAction(new ReceiveAction(new ServerHelloMessage()));
State state = new State(config, trace);

DefaultWorkflowExecutor executor = new
DefaultWorkflowExecutor (state);

executor.execute Workflow();

In the next section we will use this to create the TLS-Attacker-Connector.

3.1.2 TLS-Attacker-Connector

TLS-Attacker-Connector is a program that translates message strings to
WorkflowTrace for TLS implementations classes made by Joeri de Ruiter
[13]. I have extended this program with a DTLS feature. The message
strings are used by Statelearner to learn a TLS/DTLS implementation.
TLS-Attacker-Connector translates these message strings into XML strings
that are used by TLS-Attacker to execute a handshake message. TLS-
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Attacker-Connector also receives messages from TLS-Attacker and trans-
lates these messages into string messages and sends it to Statelearner.

TLS-Attacker-Connector is available at https://gitlab.science.ru.
nl/joeri/TLS-Attacker-Connector. The code for DTLS 1.2 is available
on the DTLS12 branch. To start TLS-Attacker-Connector, use the following
command:

$ java -jar target/TLSAttackerConnector2.0.jar -pV DTLS12.

This creates a Config class, with the following configurations:
e Ciphersuite = TLS_RSA_WITH_AES_128 CBC_SHA256.
e Compressionmethod = NULL
e ProtocolVersion = DTLS12

By default, TLS-Attacker-Connector targets a server on port 4433. If you
would like to change the port, you can change it with the -tP <port> flag.

To reset a TLS connection, it was enough to reinitialize the transport
handler. This was not the case for DTLS. To reset a DTLS connection, we
have to stop the server and start the server again. Without restarting the
server, we were not able to perform a second handshake after a successful
handshake with TLS-Attacker and the DTLS server. We have added an
option to start an external process. This external process starts a DTLS
server. To reset the UDP connection, we only had to stop the external pro-
cess and start it again. The -eS <process> flag, creates an external process
<process>. The supported external processes are OpenSSL, mbedTLS and
WolfSSL.

With the --test flag, TLS-Attacker-Connector starts a default handshake
with the server. When using TLS, it will send the ClientHello, RSAClien-
tKeyExchange, ChangeCipherSpec, Finished, ApplicationData and Alert-
WarningCloseNotify. When using DTLS, it will send the ClientHello, Clien-
tHello, RSAClientKeyExchange, ChangeCipherSpec, Finished, Application-
Data and AlertWarningCloseNotify.
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Message String Action

AlertWarningCloseNotify | Sends AlertWarningCloseNotify message

ApplicationData Sends ApplicationData message
ChangeCipherSpec Sends ChangeCipherSpec message
ClientHello Sends ClientHello message
Finished Sends Finished message

RESET Resets connection with server

RSAClientKeyExchange | Sends RSAClientKeyExchange message

Table 3.1: TLS-Attacker-Connector message strings

Using the RESET string, TLS-Attacker-Connector will reset the connec-
tion with the server. When using TCP, TLS-Attacker-Connector will restart
the connection. When using UDP, TLS-Attacker-Connector will restart the
external process.

3.1.3 Statelearner

Statelearner is a tool for state machine inference made by Joeri de Ruiter.
It can learn state machines from implementations using a block-box ap-
proach [14]. It uses LearnLib for the learning and equivalence algorithms
[15]. Providing Statelearner with a predefined alphabet, it will learn states
of the implementation. The predefined input alphabet should be listed in
the configuration file of Statelearner as well as the hostname nand port of
TLS-Attacker-Connector. Statelearner does not have information about the
implementation it is talking to. Using the output of the implementation it
tries to learn the implementation and create a Mealy state machine. We
analyse the created state machine of each implementation in section 3.3 and
3.4.

The examples/socket/socket.properties is an example configura-
tion file for TLS/DTLS implementations. The hostname and port should
be pointing to the TLS-Attacker-Connector, which is listening on local-
host:6666. The alphabet is a list of message strings Statelearner should
use, seperated with a space.

The configuration file dtls.properties we use has the following con-
figurations:

e type: socket
e hostname: localhost
e port: 6666

e alphabet: ClientHello RSAClientKeyExchange ChangeCipherSpec Fin-
ished ApplicationData Alert WarningCloseNotify
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e output_dir: output

e learning algorithm: Istar
e eqtest: randomwords

e min_length: 5

e max_length: 10

e nr_queries: 100

e seed: 1

Statelearner will only use client messages in our analysis.

3.2 Research set-up

TLS messages
DTLS implementation TLS-Attacker

XML workflow messages

Y

(re)starts

{ TLS-Attacker-Connector

A

Message strings / RESET

Statelearner

|

Model

Figure 3.1: Research set-up

Figure 3.1 shows the research set-up we have used to analyse DTLS im-
plementations. The DTLS implementation is communicating with TLS-
Attacker. Which message TLS-Attacker should send to the DTLS imple-
mentation is being controlled by Statelearner. Statelearner decides what
message will be sent. The TLS-Attacker-Connector is translating a string
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message from Statelearner to a TLS message which is used by TLS-Attacker.
First, we will start the TLS-Attacker-Connector by:

$ java -jar target/TLSAttackerConnector2.0.jar -pV DTLS12
-eS OpenSSL

TLS-Attacker-Connector will listen to message strings on TCP port 6666.
Next, we will start Statelearner by:

$ java -jar target/statelLearner-0.0.1-SNAPSHOT.jar
dtls.properties

Implementation | Version | URL

OpenSSL 1.1.2-dev | https://www.openssl.org/
mbedTLS 2.14.1 https://tls.mbed.org/
WolfSSL 3.15.5 https://www.wolfssl.com/

Table 3.2: Tested implementations

Table 3.2 shows the tested implementations in this thesis. We discuss each
implementation in the next section.

3.3 OpenSSL

OpenSSL is an open-source toolkit for TLS [16]. It is written in C and is
maintained by a team of committers. In this thesis, we have used the 1.1.2-
dev version of OpenSSL. To start an OpenSSL server, execute the following
command in the command line:

$ openssl s _server -cert cert.pem -key key.pem
-port 4433 -dtlsl.2

You can use your own certificate and key pair, but you can also use the
certificate and key pair created by the keygen.sh of TLS-Attacker. These
are stored in the resources/ folder of TLS-Attacker. Starting the TLS-
Attacker-Connector with the -eS OpenSSL flag will start an OpenSSL server
with the following command:

$ openssl s_server -key /TLS-Attacker/resources/rsal024key.pem
cert /TLS-Attacker/resources/rsalO24cert.pem -dtlsl 2
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-state -timeout 1 -mtu 1500

The flags means the following:
e -key: Private key
e —cert: Certificate file
e dtls1_2: Use DTLS 1.2
e state: Prints TLS state of the server
e -timeout: Sets timeout to 1 second

e -mtu: Sets the maximum transmission unit to 1500. By default,
the link layer maximum transmission unit is 1500 bytes. However,
whithout this -mtu flag OpenSSL does not work in our case.

Appendix A.1 and Appendix A.2 show the learned state machine of an
OpenSSL DTLS server. Appendix A.1 is transformed into a more readable
state machine. This has been done by merging state transitions with the
same begin state and end state. The happy path of the handshake has been
denoted by green. Appendix A.2 is the original state machine learned by
Statelearner. Table 3.3 shows the log file of Statelearner:

Name Value
Rounds 1

Nr. of Membership Queries 342

Nr. of Equivalence Queries 100

States in final hypothesis 8

Time learning 392 seconds
Time searching for counter example | 146 seconds
Total time 538 seconds

Table 3.3: Statelearner log of OpenSSL

We follow the happy path of a TLS handshake below, denoted by green
in Appendix A.1, step by step:

e State 0: The handshake starts in sg. No message has been sent
yet. From this state each state transition belongs to a handshake
message. For example, the state transition sg — s3. When sending a
ChangeCipherSpec message to the OpenSSL server in this state, the
server responds with nothing. This is represented with a hyphen (—).
Being in state ss, there is no option to get out. So, starting with a
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ChangeCipherSpec message, it is not possible to end the conversation
with a private connection.

e State 1: A ClientHello message has been sent from sg, this results
in a state transition from sy — s;. DTLS sends the ClientHello twice
in order to prevent DoS attacks. The server has responded with a
HelloVerifyRequest. Again, from this state every message has its own
state transition.

e State 4: Following the handshake of DTLS in figure 2.3, the Clien-
tHello message has been sent twice when the implementation has
reached this state, via sg — s; — s4. The server sends ServerHello,
Certificate, ServerHelloDone messages. This is expected behaviour
from the server.

e State 5: The next expected message from the client is a ClientKey-
Exchange message. In our case, we send an RSAClientKeyExchange.
Following the state transitions from the start, so — s1 — s4 — s5, we
end in state 5. The server did not send any messages, because it is
waiting for more messages from our side.

e State 6: In this state, we have sent the ChangeCipherSpec. The state
transitions thus far is sg — s1 — s4 — s5 — sg. Still no message from
the server during this state transition, which is correct.

e State 7: Ending in state s7, our client sent a Finished message. The
Finished message is the last message of the handshake and the server
answered with a ChangeCipherSpec and Finished message. The hand-
shake is now completed and the server and client can communicate
privately. The state transitions from the start are: sy — s1 — s4 —
s5 — s¢ — s7. This is the happy path of the handshake. Client and
server are now able to send application data over the network.

The OpenSSL implementation of DTLS 1.2 would be insecure if there was
another path between sy and s7. We could easily check if there is a second
path, by reversing from s7 to sg.

e State 7:

— 8¢ — S7:
This is the happy path of the handshake. This is normal be-
haviour.

— 87 — 87!
This is a loop in s7, this is normal behaviour too. From the
server’s perspective this would be a retransmission by the client.
It could be that the message from the server did not reach our
client. Thus our client would retransmit its last sent message.
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e State 6:

— S5 — Sg:
This is the happy path of the handshake. This is normal be-
haviour.

— S¢ — Sg:
There a two loops in sg. A loop where the ApplicationData mes-
sage has been sent and a loop where AlertWarningCloseNotify

has been sent. In both cases, the server did not send a message
back.

State 5:

— S84 — S5
This is the happy path of the handshake. This is normal be-
haviour.

State 4:

— 81 — S4:
This is the happy path of the handshake. This is normal be-
haviour.

State 1:

— S9 — S1:
This is the happy path of the handshake. This is normal be-
haviour.

State 0:
This is the begin state, there is no incoming state transition.

We did not found any other path from sy to s7, so we have found no vul-
nerabilities in OpenSSL.

3.4 mbedTLS

mbedTLS is previously known as PolarSSL [17]. mbedTLS advertises itself
as easy to use and easy to get. We have used the 2.14.1 version of mbedTLS.
After compilation of the program, an example DTLS server is available in
the programs/ssl directory. We will use this DTLS server and we have
not changed anything in the code base. The example server starts a DTLS
server on port 4433. To execute this, use the following command:

$ ./dtls_server

Starting the TLS-Attacker-Connector with the -eS mbedTLS flag will start
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a mbedTLS server with the same command:
$ /mbedtls-2.14.1/programs/ssl/dtls_server
Appendix A.3 and Appendix A.4 show the learned state machine of mbedTLS.

As we did for OpenSSL, Appendix A.3 is transformed into a more readable
state machine. Table 3.4 shows the log file of Statelearner:

Name Value
Rounds 2

Nr. of Membership Queries 631

Nr. of Equivalence Queries 156

States in final hypothesis 6

Time learning 874 seconds
Time searching for counter example | 217 seconds
Total time 1091 seconds

Table 3.4: Statelearner log of mbedTLS

Again, we will follow the happy path step by step:

e State 0:
This is the begin state of the implementation.

e State 1:
Sending the first ClientHello results in the state transition sy — s7.
The server responded with a HelloVerifyRequest.

e State 3:
Sending the second ClientHello results in the state transition so —
s1 — s3. The server responded with the three ServerHello, Certificate,
serverHelloDone messages. All normal behaviour thus far.

e State 4:
Sending the RSAClientKeyExchange message results in the state tran-
sition sg — s1 — s3 — s4. The server did not respond with a message,
because it is waiting for the next messages to come.

e State 5:
Sending the ChangeCipherSpec message results in the state transition
So — S1 — 83 — S4 — S5.

e State 2:
Sending the final Finished message, results in a ALERT_FATAL_DE-
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CODE_ERROR. The server was not able to decrypt the encrypted
finished message. and send a FATAL ERROR. The handshake has
failed.

Running Statelearner, ends with a failed handshake. The server was unable
to decrypt the Finished message. We were not able to find the reason for the
failed handshake. The number of packets sent during the analysis, according
to WireShark, was 23756. We expect that a retransmission has taken place
during the handshake, but we did not verify this. The cause of this error
could be a wrong hash of all previous handshake messages in the Finished
message. As explained in the basics of TLS 1.2, a verify data value is
computed. To compute this value, we need a hash of all previous handshake
messages. If a message has been changed, by for example a retransmission,
the hash changes and the verify data has a different value. This will fail the
handshake.

Running mbedTLS and TLS-Attacker-Connector without Statelearner
would give more insight in what happened. Starting mbedTLS and TLS-
Attacker-Connector with the - -test flag, results in a complete handshake and
sending application data in both directions. However, after the handshake
and application data, mbedTLS fails on processing the clientHello handshake
message. Following the communication with Wireshark, we can see the
complete handshake and application data, but we cannot see a ClientHello
at the end.

The problems seem to point towards a different problem in TLS-Attacker.
Future work has to be done on TLS-Attacker in order to analyse a fullhand-
shake with mbedTLS. We can analyse whether mbedTLS has vulnerabilities
if the handshake succeeds and application data can be sent.

As we did with OpenSSL, we can reverse the happy path from s5 to sg
to find any weird behaviour of mbedTLS:

e General remark: In state sg, s1, s4 and s5 of the happy path, we can
send application data to the server without a state change.

e State 5:

— 84 — S5
This is the happy path of the handshake. This is normal be-
haviour.

e State 4:

— 83 — 84:
This is the happy path of the handshake. This is normal be-
haviour.

e State 3:
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— 81 — 83:
This is the happy path of the handshake. This is normal be-
haviour.

e State 1:

— S0 — S1°
This is the happy path of the handshake. This is normal be-
haviour.

— 83 — S1:
We are able to take a step back from s3 to s1. Sending three
ClientHello messages is equal to sending one ClientHello message.
This is weird behaviour.

— S4 — S1:
Sending a ClientHello, RSAClientKeyExchange or Finished mes-
sage from sy results in a ALERT _FATAL DECODE_ERROR.
However, we end up in s;, where we can continue our handshake
with a ClientHello message. This is weird behaviour.

— 81 — S1°
Sending the messages RSAClientKeyExchange, Finished or Alert-
WarningCloseNotify, the implementation stays in the same state.
This is weird behaviour.

e State O:

— 81 — S0:
This is the happy path of the handshake. This is normal be-
haviour.

— 81 — S1°
Sending the messages RSAClientKeyExchange, Finished or Alert-
WarningCloseNotify, the implementation stays in the same state.
This is weird behaviour.

We were able to send an RSAClientKeyExchange or a Finished message
before and during the ClientHello messages phase of the handshake with-
out receiving a FATAL_ERROR. This is unexpected behaviour, because the
message flow of a TLS handshake is strict. A TLS server must terminate a
connection whenever an out of order message is received.

It was also possible to send three ClientHello messages, which ends in
the same state as when one ClientHello message was sent. Starting a hand-
shake with four ClientHello messages and continue the handshake is possible
with mbedTLS. Increasing this value would not necessarily result in a DoS
possibility as creating a HelloVerifyRequest is not a difficult operation. A
HelloVerifyRequest message is not a large, an amplification attack would
not work either.
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Later in the handshake, after the RSAClientKeyExchange, it is possible
to send either a ClientHello, RSAClientKeyExchange or Finished Message.
This ends in the same state when a normal handshake would have sent one
ClientHello message. Since we were not able to perform a successful hand-
shake, we can not state that this is a vulnerability in mbedTLS. However,
this could lead to a vulnerability. We have found three weird behaviours
in mbedTLS.

3.5 WolfSSL

WolfSSL is also an open-source library, written in C [18]. WOolFSSL is a
lightweight, portable TLS library. It targets on IoT and embedded sys-
tems, because of its small size and high speed. WolfSSL supports up to
TLS 1.3 and DTLS 1.2. In this thesis we use WolfSSL version 3.15.5. Af-
ter downloading WolfSSL, you have to configure WolfSSL, to enable DTLS
by $ ./configure --enable-dtls --enable-debug. We also enable more
debug information. Then install WolfSSL by $ make and $ sudo make
install.

To start a TLS server example, you need to execute the following com-
mand:

$ examples/server/server -k /TLS-Attacker-Development/
resources/rsal024key.pem -c /TLS-Attacker-Development/resources/
rsalO24cert.pem -p 4433

Again, we use the key and certificate generated by TLS-Attacker. To start
a DTLS server, add the -u flag.

Testing the WolfSSL DTLS server with TLS-Attacker-Connector results
in an error -373 and error message “No ClientHello before ClientKeyEx-
change”. Error -373 means that a received message is out of order [19]. View-
ing the handshake via Wireshark, we have noticed a weird message flow. The
client sends a ClientHello twice. Then, the server answers with HelloVeri-
fyRequest twice. After that the client responds with a ClientKeyExchange.
We expect that the TLS-Attacker sends the second ClientHello too fast. In-
creasing the timeout in TLS-Attacker from 100, to any higher value did not
work.

No model has been learned for WolfSSL. In order to learn a model, work
has to be done on TLS-Attacker in order to complete a full handshake. If
a full handshake succeeds and application data can be send, we can analyse
whether WolfSSL has vulnerabilities.
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3.6 Implementation fingerprinting

As OpenSSL and mbedTLS behave differently in our research, it is possible
to distinguish these two. Both implementations have a unique fingerprint
when it comes to reacting to certain message flows. Sending a message flow of
ClientHello, RSAClientKeyExchange, ClientHello, RSAClientKeyExchange,
ChangeCipherSpec and Finished the mbed TLS implementation behaves dif-
ferently than OpenSSL. MbedTLS allows this behaviour and continues the
handshake while OpenSSL terminates the connection. The different be-
haviour could lead to an attack.

An attacker could use this information to identify which DTLS server
is being used. If an application is using and one of them and it has a
vulnerability, the attacker could use this information in the Reconnaissance
phase of its attack [20]. In this phase, the attacker searches for vulnerabilities
in the target. With this information, the attacker could proceed to phase
two: the Infiltration phase.
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Chapter 4

Related Work

Research in the area of state machine inference has been done already. In
2015, 9 different implementations of TLS have been analysed [21]. GnuTLS,
mbedTLS, miTLS and OpenSSL were among the 9 implementations. In
3 out of 9 implementations they have found security vulnerabilities. An-
other paper analysed 145 versions of OpenSSL and LibreSSL both client-
and server-side [22]. This paper found 15 unique OpenSSL and 2 LibreSSL
server-side state machines and found 9 unique OpenSSL and 2 LibreSSL
client-side state machines. In 2018, TLS 1.3 was analysed using state ma-
chine inference [23]. This thesis found unexpected error alert messages on
some inputs in WolfSSL.

Next to the TLS protocol, also the Secure Shell (SSH) protocol has been
analysed with state machine inference [24] [25] [26]. SSH is a protocol that
provides a secure remote login over an insecure network [27].

DTLS implementations have not been analysed with state machine in-
ference. However, DTLS has been analysed to implement Constrained Ap-
plication Protocol (CoAP) in IoTs [28]. CoAP is a protocol that provides
interaction between applications in a constrained environment [29]. This
paper concludes that there is an issue of usability with deploying DTLS
with constrained devices in IoT. The paper suggests new lightweight secu-
rity mechanisms to secure CoAP.

The record protocol of TLS and DTLS have been attacked [30]. Vul-
nerabilities have been found in the record protocol of TLS and DTLS when
used in CBC-mode.

This thesis analyses DTLS implementations by using state machine in-
ference, which has not been done before.
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Chapter 5

Conclusions

In this thesis, we were able to create a state machine of OpenSSL and
mbedTLS. For WolfSSL, we were not able to create a state machine. Dur-
ing the handshake with WolfSSL, we received an out of order error. No
vulnerabilities has been found in the server-side DTLS implementation of
OpenSSL. We were able to perform a handshake and send application data
to the OpenSSL server. Using any message flow other than the normal hand-
shake, it was not possible to perform a successful handshake and to send
application data.

With mbedTLS, the handshake failed during the final Finished message.
The mbedTLS server was not able to decode the Finished message and sent
an ALERT FATAL DECODE ERROR message back. We expect that a
retransmission has been taken place and TLS-Attacker is not able to handle
retransmission. We can not confirm this as 23756 packets has been sent
during the creation of the state machine. However, we have found three
unexpected behaviours earlier in the handshake.

WOolfSSL received messages out of order. TLS-Attacker sends the hand-
shake messages in the same order as for OpenSSL and mbedTLS. Increasing
the timeout of TLS-Attacker did not solve the problem.

As mbedTLS and OpenSSL behaved differently during our research, it
is possible to distinguish these two. Both implementations have a unique
fingerprint when it comes to reacting to certain message flows. This will help
an attacker to identify a target in the reconnaissance phase of launching an
attack.
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Future work has to be done on the software tool TLS-Attacker in or-
der to fix the problems with mbedTLS and WolfSSL. If TLS-Attacker can
successfully complete a handshake and send application data to mbedTLS
and WolfSSL, it is possible to further analyse whether there are vulnerabil-
ities in these implementations. As we were not able to perform a successful
handshake, we can not state that the unexpected behaviour of mbedTLS
results in a vulnerability. A state machine including a successful handshake
with mbedTLS and WolfSSL could reveal more unexpected behaviour or
vulnerabilities.
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